
A Computational Library Using P-adic Arithmetic for Exact
Computation with Rational Numbers in Quantum Computing

Final Report (Grant # FA9550-05-1-036 3)

Chao Lu

Computer & Information Sciences

Towson University

Nov. 30, 2005

TOVON
UNIVERSITY

20061025039

REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-06-0428

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments ret
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanL
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

7/20/2006 Final Report 7 Jan 2005- 30 June 2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A p-adic Computational Library for fast Computation in Quantum Computing

5b. GRANT NUMBER

FA9550-05-1-0363

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
I

Chao Lu 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Towson University REPORT NUMBER

8000 York Rd.
Towson, MD 21252

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

Air Force Office of Scientific Research AFOSR
4015 Wilson Blvd
Mail Room 713 11. SPONSOR/MONITOR'S REPORT

SVA NUMBER(S)

12. DlSTRIBUTIOf .f .BIIYSl/'EIN

Distribution A; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Many classes of physical problem can be models through the use of sets of linear equations. The solution of the sets of equations is
equivalent to calculation of a matrix inverse or generalized inverse, or to the reduction of the matrix to some type of canonical form,
including determination of characteristic equation. Conventional machine computation relies on p-ary (for a radix number p such as
2 or 10), or floating-point computation, poor conditioning in connection with round-off error can result in unreliable answers. For
scientific computations related to quantum physics, a possible approach is to use techniques of exact linear computation

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF Chao Lu

PAGES

U U U UU 19b. TELEPHONE NUMBER (Include area code)

410404-3701
Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Table of Contents

1. Summary and Related Computational Issues
1.1 Project Summary
1.2 Computational Issues

2. Program Description
2.1 Program Interface
2.2 Program Modules

2.2.1 Fractional Number to P-adic Sequence Conversion
2.2.2 P-adic Sequence to Fractional Number Conversion
2.2.3 Single Number Addition
2.2.4 Single Number Subtraction
2.2.5 Single Number Multiplication
2.2.6 Single Number Division
2.2.7 Matrix Addition
2.2.8 Matrix Subtraction

2.2.9 Matrix Multiplication

2.2.10 Square Matrix Inverse
2.2.11 Matrix Addition (I/O with FILE)
2.2.12 Matrix Subtraction (I/O with FILE)
2.2.13 Matrix Multiplication (I/O with FILE)
2.2.14 Square Matrix Inverse (I/O with FILE)
2.2.15 Detail Description of some Functions

2.3 Source Code Map
3. Results Analyses and Comparisons

3.1 Some Test Examples and Results
3.2 Comparison of our Results with Matlab Symbolic Toolbox

4. Future Work

2

1. Summary and Related Computational Issues

1.1 Project Summary
In many scientific fields, physical problems can be modeled by a set of linear equations.
Solving the linear equations is equivalent to finding the matrix inverse or generalized
inverse, to reducing the matrix to a specified canonical form, or to determining the
characteristic equation. If using conventional p-ary or floating-point arithmetic for such
computations, the cumulative round off errors may make the results unreliable. For
scientific computations related to quantum physics, one is interested in exact linear
computation. The computational complexity of the rational arithmetic approach is very
expensive and laborious, and it is a very challenging computer science problem to deal
with dynamic memory allocation during the computing process. Many researchers have
invested a lot of time to develop algorithms. Computational packages have been made
available for the scientific research community. NTL written by Victor Shoup [4] is the
one we have picked as a computational vehicle to develop a rational matrix computation
library. The alternative approach represents all integers and rational numbers in terms of a
set of residues with respect to a prime number and its powers, called a p-adic number
system. The p-adic arithmetic has many attractive features [1].

We have developed algorithms of matrix operations with rational numbers by representing
numerator and denominator with arbitrary length integers; and designed algorithms using
modulo arithmetic of the p-adic number system, where all numbers are represented by
their p-adic sequence, all arithmetic operations are carried out in the p-adic domain, then
the results are converted back to rational numbers. We have built an Exact Scientific
Computational Library (ESCL) using both approaches. The first approach serves as the
basis for comparison and the main effort has been on the second approach. The algorithms
are tested and compared with the MATLAB Symbolic Toolbox for small integers. The
ESCL is implemented in C++.

We investigated various ways to improve computation speed. First, selecting an optimal
prime number for p-adic expansion. We did experiments on random rational matrices with
different prime numbers (P) and record the execution time and tried to get the right prime
number by analyzing the experimental results. Second, choose the right length M of the
p-adic expansion for the rational numbers in the matrix. The following chart shows that
when P gets bigger, M gets smaller (blue curve), while the runtime stays relatively
unchanged (red curve).

3

!:::•[: ~ ~~~ ~ ~ ~ ~

0 50 :00 300 1-00c

Prime nutmber range (2,1999).
Matrix size 8by 8.
Note: M-estimatiorn is th~e M1100.

Both the experiments and the theory showed that the runtime is related to the length of
p-adic sequence (M). A large prime P will need a smaller M, which in turn will cut the
computational complexity. The M and P are related as:

m = 2[log(,5%') /log P]1 (1)

where the 5 =H2, A and A, is the Euclidean length of the ith column of the matrix.

A few examples are given here for comparison of runtime.
Example 1:
1/199999999999999999999 + 2/199999999999999999999

Prime M Time
2 169 20Oms
8971 46 <1 ms

Example 2:
1/9876543211234567 * 9876543211234567/2

Prime M Time
3 100 316 ms
8707 60 120Oms

4

Here is the flow chart of getting the right "M' from an estimated "P", then use equation (1)
to find P with the M

Input the matrix to
be calculated.

mEstimate2 0

Get the prime number being
estimated (estimatePrime). Here
we suppose the m=l.

selectPrime0

Get the accurate prime number.

SmEstim ate2 0

Get the m.

1.2 Computational Issues

By November 2005, we have completed the following functions:
1) Fractional number to p-adic sequence, and its inverse.
2) Single number operations (addition, subtraction, multiplication and division) in the

p-adic field.
3) Matrix operations(addition, subtraction, multiplication and inverse)in the p-adic field.
4) Matrix operations (addition, subtraction, multiplication and inverse) in the p-adic field

with I/O file support.

For all operations inp-adic field, we need to deal with the offset first. Just like we add two
numbers with different exponents, we need to change them to the same format first.
(eg.5*105 + 2*103 =500000+2000=502000) We make all the vectors with the
offset=0,which is easier to calculate. If the offset is not equal to zero, we need to shift the
p-adic sequence. Here is an example.
[1l/3]p=5=[1,2,3,l,3], the offset (first digit) =1, after the shift, we get [0,0,2,3,1]
Arithmetic Operations:
1) Addition/subtraction
The algorithm for addition aligns the p-adic point of the mantissa, retaining the lower

exponent and finds the sum digit sj and carry digit c,%1 from the knowledge aj, b, and

5

C,. Thus s, = (a, + b, + c) modp

for i =0 , 1, 2,..., (r-1)

Ci+l= 1 , if ai + bi + ci _> p

=0, otherwise
cO = 0, and ignore cr.

Subtraction is realized as the complement of addition.
Let us see this example.
Prime=5;
1/3+2/9= [02313 1313 131313]

+[030124320124320]
=[004201243201243]
=5/9

Here is another example whose offset is not zero.
Prime=5;
25/3.+ 1/7= [2231313131313131]

+ [0330214230214230]
=[0002313131313131]
+[0330214230214230]
=[0332032412032412]
=178/21

2) Multiplication
This is similar to p-ary multiplication, except that the product is developed to only lower r

digits (modulo Pr). The algorithm consists of first forming the cross-products of the

mantissa,
Py = baj 0 < i <(r - 1)

-where 1 = 0,1 ... r - 1, and the partial product Pi and product P,
r-I

P =I 4PA(j)
j=O

r-1

P =ZPA(i)
i=0

where A(X) denotes a right shift of X digits. The offset of the result is offsetl+offset2.
Let us see this example. 2/3 * 1/6, prime=5.

04131313131313 .. .

01404040404040 .. .

00000000000000

6

4131313131313 • .

123131313131 • .

00000000000 • .

1231313131 ...

000000000 ...

12313131 ...

0000000 ...
123131 ...

00000 ...
1231 .. .

000 1 • •
12 ''-

+ 0. . .

04201243201243 • .

3) Multiplicative Inverse and Division

Given that 0 _< m. < Pr - 1 and GCD (p,mp) =,m f mod pr can be obtained very simply by

a recursive solution of the congruence with respect top.

Let mr6 = bo,bi,... bri(bo # O)and mg' = qoqi,...,qr-. The qican be obtained by solving for

qj in

r-1

mI fl qqp' = lmodpr.
i=0

Thus, starting with q0 = boI mod p,q, (k >_ 1) is computed by solving for

k-1

(qkpk + -qjpi)b =lmodpk+l.

This leads to the following deterministic trial-error-free division algorithm, the quotient, digit
by digit, proceeding from the lower index to the higher index position.

-1

The following is the algorithm for finding ma •m

Let
Ro zero-th partial remainder or initial numerator (=1 for finding b-');
R1 ith partial remainder;
Ri ith positional digit of Ri.

Then

qj = Rilbo' modp

7

for i=O, 1, 2, ... , (r-1) and R,+1 = Ri - qjbA(i), where A(i) is the right shift by i digits.

Note that this algorithm can be applied for any numerator by setting R0 = 1 and all other digits

of Rj to zero, one can obtain the multiplicative inverse of m# . The offset of the result is

offsetl-offset2.
As an example, we divide 2/3 by 1/12. In this example, we do not include the offset.
We have
2/3= .4131313
1/12= .3424242
The first digit of the divisor is bO = 3 and its multiplicative inverse modulo 5 is
b0' (modp) = 31 (mod 5)= 2
The first digit of the partial remainder (which, in the first step, is the dividend) is dO = 4,
which gives
a0 = b01 do (modp)- 2" 4 (mod 5)= 2.
Thus, we obtain the first digit of the quotient. We then update the partial remainder by

subtracting 3 times the divisor from it.
.3

.3424242 -. 4131313 ...

.4333333 -. 1111111 ...

.0342424 ...
To obtain the second digit, we multiply b'10 (modp) by the first digit of the partial
remainder and reduce the result modulo p.
al =2- 3 (mod 5)= 1.
Thus, the second step of the division procedure gives us

.31

.3424242 • .0342424 ...

.0342424 • .0202020 ...

.0000000 ...
This procedure produces the partial remainder, which is zero, hence we terminate the
expansion. In general, this will not happen and we will have to continue until the period is
exhibited.

2. Program Description
2.1 Program Interface

8

..

The user inputs the operation number first and then follows the instructions to do the
operation.

2.2 Program Modules
In this section, we will give the detail description of each operation module. Note that the
function with the star mark "*" means that you can find the detail description in that part
of the program.
2. 2.1 Fractional Number to P-adic Sequence Conversion
Input: fractional number;
Output: The smallest prime number selected by the program, the minimal number of digits
for p-adic sequence, the p-adic sequence and the runtime.

S: SngleNumers ultplictio

Input Operation

Number "1"

singlelnputo *

Get 1) the numerator and denominator vector

2) prime number

3) m(the minimal number of digits which ensure

the unique of the padic sequence transform)

I
Timer starts

matrix2padico *

Get the padic sequence.

I
Timer stops

I

Output the padic
tseauence and the runtime

Here is an example of this operation.

t 1es ene teora io tnesihas1o2)1

2.2.2 P-adic Sequence to Fractional Number Conversion

Input: P-adic sequence, prime number;

Output: The fractional number and the runtime.

10

Input Operation

Number "2"

Input the padic sequence

and the prime number.

Timer starts

R.fracO

Get the fraction number.

[Timer stops
F ~II

Output the fraction

number and the runtime

Here is an example of this operation.

2.2.3 Single Number Addition
Input: Two fractional numbers that need to be added;

Output: The smallest prime number selected by program, the minimal number of digits for p-adic

sequence, the p-adic sequence of the addition result, the result converted back in fraction number and

the runtime.

11

Input Operation

Number "3"

numbersInputo *

Get 1) padic sequence for the two numbers

2) prime number

3) m(the minimal number of digits which

ensure the unique of the padic sequence

transform)

Timer starts

vectorAddo *

Get the padic sequence for result.

R.fraco

Get the fraction for the result

Timer stp

Output the fraction and)

the runtime

I.lI e the Io I o[2)]

2.2.4 Single Number Subtraction

Input: Minuend and subtrahend.

Output: The smallest prime number selected by program, the minimal number of digits for p-adic

sequence, the p-adic sequence for the subtraction result, the result converted back in fraction number

12

and the runtime.

The only difference with Single Number Addition (2.2.3) is that we use vectorSubo* instead of

vectorAddo to do the subtraction.

2.2.5 Single Number Multiplication

Input: Two numbers.

Output: The smallest prime number selected by program, the minimal number of digits for p-adic

sequence, the p-adic sequence of the multiplication result, the result converted back in fraction number

and the runtime.

The only difference with Single Number Addition (2.2.3) is we use vectorMul0* instead of vectorAddo

to do the multiplication.

2.2.6 Single Number Division
Input: Two numbers.

Output: The smallest prime number selected by program, the minimal number of digits for p-adic
sequence, the p-adic sequence of the division result, the result converted back in fraction number and
the runtime.

The only difference with Single Number Addition (2.2.3) is we use padicDivisiono* instead of

vectorAddo to do the division.

2.2.7 Matrix Addition
Input: Two matrixes.

Output: The smallest prime number selected by program, the minimal number of digits for p-adic
sequence, the p-adic sequence of the matrix addition result, the result converted back in fractional
matrix and the runtime.

13

Input Operation

Number "7"

matrixlnputo *

Get 1) padic sequence for the two matrixes
2) prime number

3) m(the minimal number of digits which

ensure the unique of the padic sequence

transform)

Timer starts

matrixAddo *

Get the padic sequence for result matrix.

Imatrix2frac0*

Get the fraction matrix for the result

STimerstp

•Output the fr'action•

matrix and the runtime

14

Here is an example of this operation.

a . .~

2.2.P8 Matrix Subtraction

Input: Minuend matrix and subtrahend matrix.

Output: The smallest prime number selected by program, the minimal number of digits for p-adic

sequence, the p-adic sequence matrix for subtraction result, the result in fraction matrix and the

runtime.

The only difference with Matrix Addition (2.2.7) is we use matrixSub0* instead of matrixAdd0) to do

the subtraction.

2. 2. 9 Matrix Multiplication
Input: Two numbers.

Output: The smallest prime number selected by program, the minimal number of digits for p-adic

sequence, the p-adic sequence matrix of the multiplication result, the result converted back in fractional

matrix and the runtime.

15

The only difference with Matrix Addition (2.2.7) is we use matrixM0* instead of matrixAddo to do the

multiplication.

2.2.10 Matrix Inverse

Input: One square matrix.

Output: The smallest prime number selected by program, the minimal number of digits forp-adic

sequence, the p-adic sequence matrix of the inverse result, the result converted back in fraction

matrix and the runtime.

The only difference with Matrix Addition (2.2.7) is we use Determinanto,Transpose 0, padicDivisiono

and cofactoro instead of matrixAdd(to do the inverse calculation. The logic in this part is the same

as the normal matrix inverse.

2.2.11 Matrix Addition (I/O with FILE)
Input: No need to input the specific number. The input can be founded in file "Input.txt".

Output:
1) On the screen:

The smallest prime number selected by program, the minimal number of digits for p-adic sequence, the

p-adic sequence matrix of the addition result, and the result converted back in fraction matrix with the

runtime.

2) In the file: You can find the final result--fraction matrix in the file

16

Input Operation

Number "11"

matrixInputFileo *

Get 1) padic sequence for the two matrixes

2) prime number

3) m(the minimal number of digits which

ensure the unique of the padic sequence

transform)

Timer starts

matrixAddo *

Get the padic sequence for result matrix.

matrix2fraco*

Get the fraction matrix for the result

STimer stops

C utput the fraction•

matrix and the runtime

"Out.txt".

Here is the example of this operation.

17

Th minianme digto pai Feqen e in: t F2 mt7e~Hl

Fh airs Matrix fo the Fraciola iars :s

IO2 0 3 , 0 0j0040t,0• 0 5 0 0 0 0 0[

5,E 78 0:. 1/1 0it 0 000000 000000

202.12 Mari Sutato 0/ wit FILE)000 0000 000

sequencethena Madric iseqec: arxo h utato eut h eutcnetdbcnfato

ecmautrxandthen rutime.i ecn~)

The | ,-]] • • onl difernc with Matrix] Addition [(2.2.11), is] we use mari.uO*intedofmari•d()tod

Frt vti he subraction.lV~i s

. -• .i ==•

2.2.12 Matrix Subtraction (I/O with FILE)

Input: Input.txt

Output: The smallest prime number selected by program, the minimal number of digits for p-adic

sequence, the p-adic sequence matrix of the subtraction result, the result converted back in fraction

matrix and the runtime.

The only difference with Matrix Addition (2.2.11) is we use matrixSub0* instead of matrixAdd0 to do

the subtraction.

2.2.13 Matrix Multiplication (I10 with FILE)

Input: Input.txt
Output: The smallest prime number selected by program, the minimal number of digits for p-adic

sequence, the p-adic sequence matrix for multiplication result, the result in fraction matrix and the

18

runtime.

The only difference with Matrix Addition (2.2.11) is we use matrixM0* instead of matrixAddo to do

the multiplication.

2.2.14 Matrix Inverse (I/0 with FILE)

Input: Input.txt

Output:

1) On the screen:

The smallest prime number selected by program, the minimal number of digits for p-adic sequence, the

p-adic sequence matrix for addition result, the result in fraction matrix and the runtime.
2) In the file: Out.txt.

2.2.15 Detail description of some functions

matrix2padic: Convert to the p-adic sequence matrix.

matrix2frac: Convert to the fraction matrix.

singlelnput :Deal with the input process for the translation from single fraction to p-adic sequence.
numbersInput : Deal with the input process for the single numbers' operation.

matrixlnput: Deal with the input process for the matrix's operation.
matrixlnputFile : Deal with the input process for the matrix's operation with file.

matrixlnputFileSingle : Deal with the input process for the matrix's inverse operation with file.
matrixOutputFile :Deal with the output process for the matrix's operation with file.

matrixAdd: Input two padic matrix, give out the addition result also in the format ofp-adic matrix.

matrixSub: refer to MatrixAdd

matrixM: refer to MatrixAdd

matrixEleM : Input one padic matrix and one fraction, give out the addition result in the format of

padic matrix.

vectorAdd: Input two padic sequence, give out the addition result also in the format ofpadic sequence.
vectorSub: refer to vectorAdd

vectorMul: refer to vectorAdd
vectorWoutOffAdd: The only difference with vectorAdd is that the two padic sequence has no offset.

vectorShift : Shift the given vector to right n digits, n is also a given number. Use zero to fill in the
blank digits.
vectorShiftwOff: Shift the given vector(exclude the first digit) to right n digits, n is the offset of the

vector which is the first digit in the vector. Use zero to fill in the blank digits.

19

padicDivision : Single p-adic vector division.

Determinant : Calculate the determinant of the matrix. If the determinant matrix is zero, we exit the

program. Otherwise, continue the calculation.

Cofactor: Calculate the matrix with elements that are the cofactors, term-by-term, of a given

square matrix.
Transpose: Transpose the cofactor matrix to get the inverse of the original matrix.

1) matrix2padic Input the vecNum, vecDen,numdig, prime

I I
Get the "i"th element of vecNum and vecDen.

Assign them to fracpadic R.

R.padicExpando

Assign the padic sequence to

one row of padic matrix.

20

SPrompt the user to input the
First Matrix elements.

String2zzO

Get the vecNuml, vecDenl, rowl and coll.

Prompt the user to input the

Second Matrix elements.

=String2zz0

Get the vecNum2, vecDen2, row2 and co12.

I
Check the row number and column No

number of both matrixes. Meet the
row number and column number

requirement for the two matrixes?

_
Yes

Merge vecDenl and vecDen2.

Get the vecTden.

selectP(vecTden);

Get the minimal proper prime

according to vecTden.

] mEstimate0

According to (vecNuml,vecDenl,prime,rowl, coll)

and (vecNum2,vecDen2,prime,row2, col2), get two m
(ml,m2) through mEstimateo.

Choose the smaller one from ml and m2 as m (the
minimal number digit of padic sequence).

matrix2padic0

Use matrix2padic0 to translate two matrixes to two

padic matrixes separately.

21

2.3 Source code map
File Name Main Function Include
PadicComputation.cpp 1) Maino of the program 2) 1/0 process Singlelnputo

Numberslnputo
Matrixlnputo
MatrixlnputFile0
MatrixOutputFileo
MatrixlnputFileSingleo

RationalNumber.cpp The data structure and operation for
RationalNumber.

Fracpadic.cpp Frac2padic, padic2frac.

MatrixASM.cpp Calculate the matrix addition, subtraction
and multiplication.

MatrixInv.cpp Calculate the matrix inverse.
MatrixCal.cpp Transform the matrix between fraction and

Padic sequence.
Division.cpp Calculate the padic sequence division.
SelectP.cpp Select the proper prime. (Old version)
PredictM.cpp Select the minimal number digit of mEstimateo

padic sequence.
Estimate the prime number based on the ass- mEstimate20
umption of m=l.

Zztools.cpp Transform the input into
numerator/denominator vectors.

3. Results Analyses and Comparisons

3.1 Some Testing examples and Results
Note: In the following examples, we use "p" as the prime number selected by the program
and "m" as the digit number ofp-adic sequence.
1) frac2padic
Fraction p m Result
0/1 3 11 [00000000000]
1/0 The denominator CAN NOT be zero. Please try again.
-23/15 7 17 [05053605360536053]
1/1000000 3 37 [010012000011101011201211011 1200000121]

2) padic2frac

22

Padic sequence p Result
[7 2 3 1] 5 78125/3
[0 12 13 15 6921] 23 -6910333/3444

[0 199 233 123] 241 55647/35
[0 2 3 13] 5 1/3
3) Single number addition
100000+2000000000= 2000100000/1
1/233+4/67=999/15611

-1799/3+200/7= - 11993/21

4) Single number subtraction
10000000000-1 =9999999999
1/777777777-2/3= -518518517/777777777
5) Single number multiplication
0* 1/3 =0/1
-1/333*900=-100/37
10000000000*56=560000000000
6) Single number division
0/233=0/1
6/2=3/1
100000000/ (1/56)=5600000000
7) Matrix addition
[0,100 [199999999999,1/33 [199999999999/1,3301/33
2,99999] + -222222222, -1/2] = -222222220/1, 199997/2]
8) Matrix subtraction
[0,100 [199999999999,1/33 [-199999999999/1,3299/33
2,99999] - -222222222, -1/2] = 222222224/1,199999/2]
9) Matrix multiplication
[10000,22/3 [900,33/7 [8999846/1, 330462/7
-100000/3,3] * -21, 9] =-30000063/1, -1099811/7]
10) Matrix inverse
x=[1,2,4,6;

-2,3,7,9,
1,2,3,6,
2,3,5,-9];

xl= [5/7,-2/7,-2/7,0
-2/1,1/6,2/1,1/6
1/1,0,-1/1,0
1/21,-1/126,1/21,-1/18]

23

3.2 Comparison of our program's results and Matlab symbolic results
In this part, we will compare the two programs in the following three ways.
1) When the data sizes are small.
When the data sizes are small, the results are the same.
x = [5/7 9/3 0; y = [5/7 2/3 0 2/3;

-9/8 0 3/8; 7/8 0 5/3 6/5;
-2/3 2/3 3/4; 2/3 2/5 3/4 7/8];
5/6 -7/8 0];

Our Program Result for x*y =

[1229/392, 10/21, 5, 428/105]
[-31/56, -3/5, 9/32, -27/64]
[17/28, -13/90, 241/144, 1457/1440]
[-229/1344, 5/9, -35/24, -89/180]

Matlab symbolic x*y=
[1229/392, 10/21, 5, 428/105]
[-31/56, -3/5, 9/32, -27/64]
[17/28, -13/90, 241/144, 1457/1440]
[-229/1344, 5/9, -35/24, -89/180]

2) When the data sizes are large
When the data sizes are large, the results are different. The special data set chosen can
easily show that our result is correct, while the Symbolic Toolbox is not.
Here is an example.

x=[123456789987654321/77777777777777777777, 88888888888888888888/33;
-123456789987654321, 88888888888888888888/33];

y=[77777777777777777777/123456789987654321, 1
33/88888888888888888888, 0];

Our Program Result for x*y =

[2 111111111/70000000007]
[-77777777777777777776 -123456789987654321

Matlab symbolic x*y=
[81129638414606679562133097328419/40564819207303340847894502572032,

24

1830034132283545/1152921504606846976]
[-3155041493901370661340022104799488036864391447196301/405648192073033408
47894502572032, -123456789987654320]
3) Runtime comparison
We have tested many examples, the results show that our programs run faster than Matlab
codes for large matrix sizes, while Matlab still give the correct results, but slower than that
of Matlab symbolic result when the matrix size is small. When the rational numbers have
more than 20 digits, Matlab Symbolic toolbox does not give the right results, the timing is
meaningless. The ESCL library is using ARBITRARY length integer type zz, and all the
calculation is carried out in thep-adic field. The runtime in our program highly depends on
several factors. First of all, it requires an appropriate number "M', "the minimal number of
digits for p-adic sequence". This number can be given as the smallest number only when
deal with single number.

4. Future Work
Improve the EstimateMo. Currently, the m estimation cannot always work well. In some
situation, they cannot give the sufficient number of digits for p-adic sequence for exact
computation. To avoid this kind of error, we have increased its size to plus 30 and more. We
will continue to work on this problem.

W

We will investigate specific applications of ESCL on P-adic cyclic coding theory and
quantum computational Weyl-Heisenberg representations.

References

[1] Krishnamurthy, F. V. "Matrix Processors Using P-adic Arithmetic for Exact Linear Computations", IEEE
Transactions on Computers, vol. C-26, No. 7, July 1977.

[2] Vladimirov, V.S., Volovich, I.V. and Zelenov, E.I. P-adic Analysis and Mathematical Physics, Series on

Soviet & East European Mathematics - Vol. 1 .World Scientific 1993.

[3] Lu, C. and An, M. "Final Report of Simulation of Quantum Time-Frequency Transform
Algorithms", FA9550-04-1-0406", 2005.

[4] Shoup, V NTL library at: http://shoup.net/ntl/

[5] Kornerup, P. and Gregory, R.T. "Mapping Integers and Hensel Codes onto Farey Fractions", BIT 23
(1983), 9-20.

[6] Dixon, J. "Exact Solution of Linear Equations Using P-adic Expansions", Numerische Mathematik 40,

137-141 (1982) Springer-Verlag.

25

